This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Irrigation Water Use and Soil Relations from Five Clark County School District Playfields in Las Vegas, Nevada

Cable Jones Water Management, Inc. Alexandria, Virginia Von Isaman QA Consulting and Testing, LLC Salem, Utah

Irrigation Water Use

Tune the System

Fix leaks, broken heads, mismatched heads, adjust pressure

Mismatched Heads

Pressure too high - Misting

Pressure too low - Poor Coverage

Broken Head

Measure Irrigation System Effectiveness

Catch Cup Placement

Catch Cup Measurements

Distribution Uniformity (DU)

- An efficiency rating from 0-100% that describes how evenly or uniformly irrigation water is distributed about the zone.
- Minimum DU's:
 spray 60%
 rotors 70%

Bermuda Grass Water Requirements for Las Vegas

- Bermuda grass in Las Vegas requires 29 gallons per square foot per year.
- Our schools provided 28 to 58 gallons of water per square foot per year.

Turf Performance Ratings

- For each school
 - Three locations per playfield
 - Vitality growth rating
 - Qualitative thickness/density, height of turf

Turf Performance

School	Gallons (per Sq/Ft)	Rating
Dooley	26	Fair
Galloway	37	Good
Findlay	56	Good
Greenspun	46	Fair
Eldorado	27	Good

Interpretation

- Gallons used did not seem to determine turf performance.
- What does determine turf performance?

Soil Relations

TOPSOIL QUALITY GUIDELINES for LANDSCAPING*

Category	рН	Soluble Salts dS/m or mmho/cm	Sodium Absorption Ratio (SAR)	Organic Matter %	Sand %	Silt %	Clay %	Texture Class
Ideal	5.5- 7.5	<2	<3	<u>></u> 2.0	<70	<70	<30	Loam (L), Silt Loam (SiL)
Acceptable	5.0- 8.2	<4	3 to 7 SiL, SiCL, CL 3 to 10 SCL, SL, L	<u>≥</u> 1.0	<70	<70	<30	Sandy Clay Loam (SCL) Sandy Loam (SL) Clay Loam (CL) Silty Clay Loam (SiCL)
Suspect	<5.0 >8.2	>4	>10	<1.0	<u>></u> 70	<u>≥</u> 70	<u>></u> 30	Loamy Sand (LS) Sandy Clay (SC) Silty Clay (SiC) Sand (S), Silt (Si), Clay

*from "Topsoil Quality Guidelines for Landscaping", June 2002, AG/SO-02, prepared by Rich Koenig,

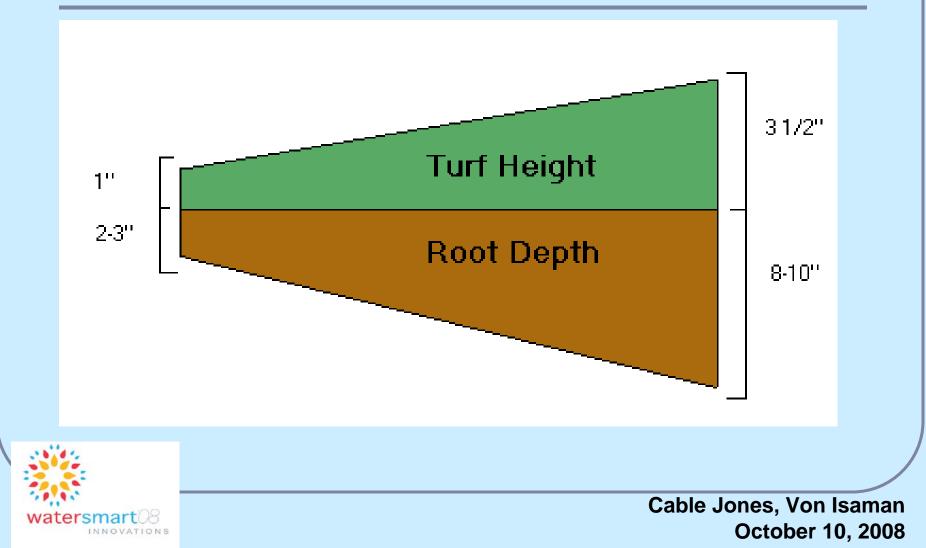
Utah State University Cooperative Extension Soil Specialist, and Cable Jones, Von Isaman, QA Consulting and Testing, LLC.

Topsoil Results for Las Vegas Schools

Sample Name	рН	Soluble Salts dS/m	Sodium Adsorption Ratio (SAR)	Texture Class (soil type)
Dooley	7.9	1.7	5.5	SiL
Galloway	7.5	1.0	3.9	L-f SL
Findlay	7.8	0.8	3.6	f SL
Greenspun	8.2	0.6	2.5	f SL
Eldorado	7.9	3.0	3.0	f SL-SiCL
Ideal	5.5-7.5	<2	<3	L, SiL
Acceptable	5.0-8.2	<4	3 to 7 SiL, SiCL, CL 3 to 10 SCL, SL, L	SCL, SL, CL, SiCL
Suspect	<5.0 >8.2	>4	>10	LS, SC, SiC, S, Si, C

Caveat

 Soil fertility was not examined, but soluble salts can be an indicator of soil fertility. For our schools, soluble salt data was mixed.



Observation

 Turf performance was not related to irrigation amount (gal per sq/ft), soil chemical (pH, salts) or physical (texture) properties.

Turf Height/Root Depth

Sandy Loam vs. Clay Loam

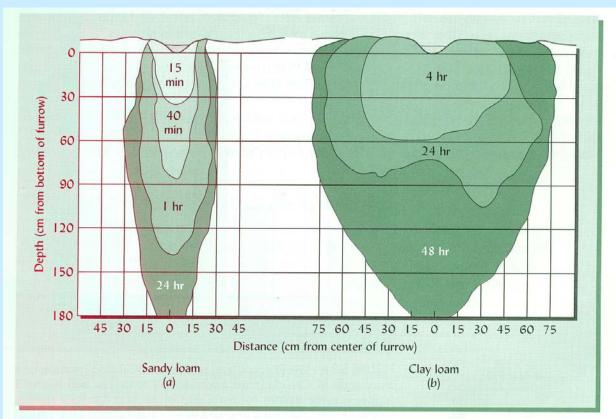


FIGURE 5.20 Comparative rates of irrigation water movement into a sandy loam and a clay loam. Note the much more rapid rate of movement in the sandy loam, especially in a downward direction. [Redrawn from Cooney and Peterson (1955)]

Turf Root/Soil Characteristics

Sample Name	Excavate Depth (inch)	Root Depth (inch)	Probe Depth (inch)	Hard Pan Depth (inch)	Perc. Rate (in/hr)
Dooley	4.5-8	4 -6	3-4	4.5-8	>6-9.5
Galloway	7-8	7	8	7-8	3.9 -8.2
Findlay	7.5 -10	5.5 -8.5	6 -19	7.5 -10	5.5 -14.2
Greenspun	4 -10	3.5- 6.5	4-5	4 -10	3.7 -10.9
Eldorado	10-11.5	5 -7.75	37	none	2.9 -11.6
Ideal		>8			2-3
Acceptable	<u>></u> 10	6-8	<u>></u> 10	<u>></u> 10	3.1-6
Suspect	<10	<6	<10	<10	<2 >6

Possible Reasons

• Variability of turf performance

- Irrigation scheduling time
 - Manual vs. Maxicom
 - Winter turn-off
 - Water management control (Other vs. School District)
 - Catch cups vs. programmed precipitation rate

Possible Reasons cont.

- Landscape installation (year school built, time of year, seeding methods, etc.)
- Maintenance after installation, especially rotor head status (tilted, too low, no rotation)

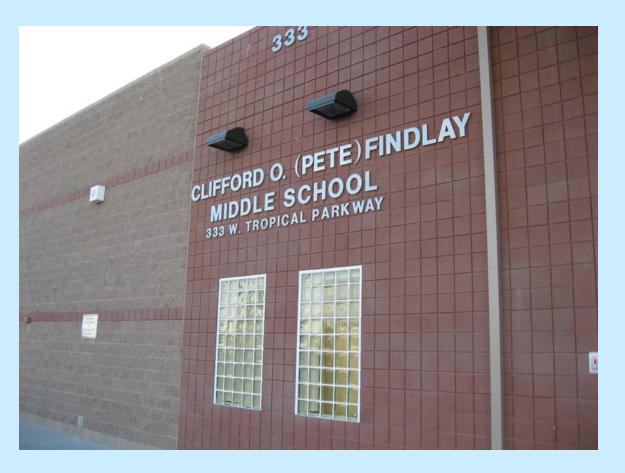
Dooley

Dooley (26 gal/sq ft, fair)

Dooley (26 gal/sq ft, fair)

Galloway

Galloway (37 gal/sq ft, good)

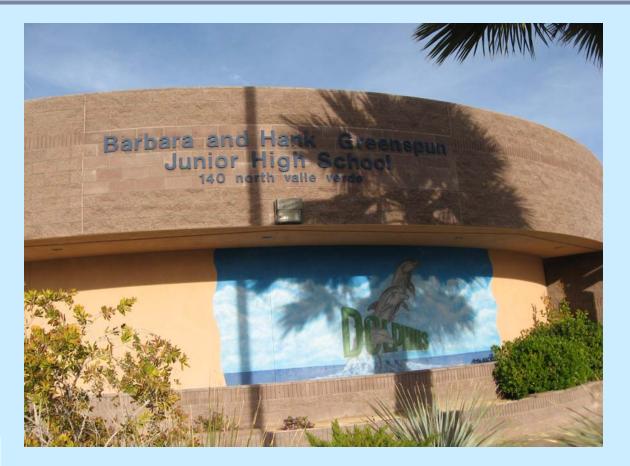


Galloway (37 gal/sq ft, good)

Findlay

Findlay (56 gal/sq ft, good)

Findlay (56 gal/sq ft, good)



Findlay (56 gal/sq ft, good)

Greenspun

Greenspun (46 gal/sq ft, fair)

Greenspun (46 gal/sq ft, fair)

Eldorado

Eldorado (27 gal/sq ft, good)

Eldorado (27 gal/sq ft, good)

Where are we now?

